
 1

Specialization of object behaviors and
requirement specifications1

Gregor v. Bochmann
Reinhard Gotzhein

Université de Montréal
Dept. d'IRO

CP 6128, Succursale A
Montréal, Québec, Canada

Abstract: Given two behavior descriptions, the question whether one is a specialization of the
other is important in many situations; for instance an implementation may be considered a
specialization of the specification, or in other cases, two specification may have to be compared.
Different notions of "specialization" have been developed in different contexts; for instance, a
subrange type may be considered a "specialization" of its base type, objects with additional
functions may be considered "specializations", a partial functions becomes more "specialized"
by having it defined more completely, and a state machine with less non-determinism may be
considered a "specialization" of another. This paper shows that all these different notions may be
considered to be special cases of a comparison relation, called "reduction", which is based on
two more basic relations which correspond to the notions of "safety" and "non-blocking". The
paper defines these concepts in a formal framework and presents certain important properties of
these relations. It also shows how these concepts may provide a formal framework for the
systematic constructions of specifications that have certain given properties. A more general
notion of "requirements specification" is also introduced which allows the separation of the
maximally allowed behavior ("safety") and a minimal behavior to be implemented, where certain
features are explicitly specified as optional.

Keywords: subtyping, specialization, object behavior, multiple inheritance, non-determinism,
specifications, conformance, implementation relations, reduction, extension.

1 This research was supported by a grant from the Canadian Institute for Telecommunications Research under the

NCE program of the Government of Canada

 2

1 Introduction

The implementation of an information system usually goes through several steps of the software
development process, such as requirement analysis, functional specification, detailed design,
code generation and testing. The system descriptions obtained during one of these steps is
usually obtained from the previous description by some form of specialization. For instance, we
may say that the detailed design is a "specialization" of the functional specification. The notion
of specialization is also used when a "generic" system must be adapted to several different user
requirements. For each case, the "specific" design may be considered as a "specialization" of the
generic one.

In the context of object-oriented programming languages, two kinds of "specializations" have
been considered [America, 87b #23] : (1) code-sharing, usually called "inheritance", which
means that a subclass inherits from its superclass the operations (methods) and the procedural
code associated with them, and (2) inheritance of properties, often called subtyping, which
means that certain properties, in particular the interface definition, of the superclass remain valid
for the subclass. A subclass may define additional operations and may introduce additional
properties, and as such, it may be considered a specialization of the superclass.

Depending on the different specification paradigms used for the specification of systems, various
kinds of specialization have been considered, such as the following:
(a) In the context of classical programming languages, a type is considered a set of values, and a

subtype ("specialization") is a subset of such values.
(b) In the context of incompletely specified functions (with "don't care" arguments), a

specialization is a function for which certain "don't care" situations obtain a specific result.
(c) In the context of object-oriented languages, a class with additional operations (methods) is a

specialization (as discussed above).
(d) In the context of sequential machines with input/output behavior, a machine which restrains

the number of possible execution traces (sequences of input/output events) is a
specialization.

(e) In the context of non-deterministic machines, a number of different "specialization" relations
have been considered [Brinksma, 86 #301] [Nicola, 87 #767] . One of these relations is

called reduction which means that a specialized process only performs traces which are also
performed by the more general process, and only blocks in situations where the more general
process also may block.

It is important to define what the precise meaning of "specialization" is. One possible approach
is to define the notion of "specialization" between type definitions as follows: An object type C'
specializes a type C if an object instance of type C can be replaced, within the overall system, by
an instance of the type C' without invalidating certain important system properties. Certain
papers explore this approach in the context where the important property is type checking[Black,
87 #104] [Cardelli, 88a #330] . Other papers address the comparison of object behaviors and
their influence on the overall system behavior [Cusack, 89 #387] [America, 89 #22] .

 3

The intent of this paper is to show that a unified concept of "specialization", as defined in
Section 3, can be used in all the above contexts.

The paper is structured as follows. A general framework for modelling object behaviors is given
in Section 2. It is based on the notions of actions (also called operations or methods) with inputs
and outputs and the state of the object which may change during the execution of an action.
Different kinds of behaviors are distinguished, such as constant behaviors which always remain
in the same state, and state-deterministic behaviors the state of which can be deduced from the
trace of the past actions. Nondeterminism may be introduced either through the fact that the
ouput of a given action is not determined, or by the fact that the next state of an object belongs to
a set of possible states, called state-nondeterminism, and only subsequent observation or
experimentation may determine the state in which the object was.

Section 3 defines several relations for comparing behaviors. They are the basis for the definition
of a general notion of reduction, which is an order relation between behaviors. It seems that this
notion is a natural definition of "specialization" in the context of the so-called undefined by
default convention, which means that for situations which are not defined, any action is allowed.
Another relation, called extension, seems natural in the context where undefined situations lead
to blocking.

Section 4 deals with the construction of specifications which denote behaviors that have certain
specialization relations with one another. The major part of the section deals with the
construction of type definitions and type checking, as included in many programming and
specification languages. The type checking may be considered as a verification of the reduction
relation between a behavior expression and a declared behavior.

In Section 5, a more general notion of "requirements specification" is introduced. We consider
an approach where a requirements specification is a pair of two behavior descriptions, one
representing the safety requirements (a kind of "maximum" behavior) and one denoting the
"minimum" behavior requirements.

2 A framework for modeling object behavior

2.1 Introduction

We consider systems that consist of a number of object instances (or objects for short). Each
object has a behavior that characterizes its ability to interact with other objects within the system
during its lifetime. There may be a large number of object instances that have the same or similar
behaviors. In the following, we will discuss how these behaviors can be formally modeled, and
how a comparison between different behaviors can be made.

In the context of system specifications, one usually defines, for a given set of object instances,
certain requirements which must be satisfied by the behavior of these object instances. The
requirement could, for instance, be the statement that the behavior of the object instances must
be equivalent to a single given behavior. However, more freedom is often allowed for the

 4

implementation. In such cases, it seems more adequate to define the requirement in terms of a set
of behaviors, where the behavior of the object instances must belong to this set.

Being part of a system, each object has an environment consisting of other objects that may or
may not belong to the system. In the course of system evolution, it is possible that the
environment is extended, which may result in the need for additional behavior of an object. This
additional behavior, however, should not affect the execution in the old environment. Also, it
may be the case that the object behavior contains options, and that it is sufficient to implement
some of them. In these cases, a systematic way of comparing object behaviors is needed. We will
discuss in Section 3 several relations for comparing behaviors, which may be considered to
represent the notion of "specialization"

2.2 Basic definitions of behaviors

In our framework, a behavior is given in terms of external actions that may be offered to the
environment. In the general case, the sets of offered actions may depend on the object’s history,
which is modeled as the sequence of previous actions, called trace. The basic notions of action,
offered actions, trace, and behavior are defined subsequently.

An action is a triplet f(i;o), where f is an operation name, i is the value of the input parameter(s)
of the operation, and o is the value of the output parameter(s) returned by the object as result of
the operation.

Definition 2.1: Let F be a set of operation names, I be a set of inputs, and O be a set of outputs.
Then Act = F I O is the set of actions.

Examples:
CM1 (a coffee machine): There is one operation, denoted serve, one input, denoted coin, and one

output, denoted coffee. The only action is serve(coin; coffee).
SQRT1 (an object providing the square root function): There is one operation, denoted sqrt, and

the set of inputs and outputs is the set of non-negative real numbers. An action is written
sqrt(i; j) where i and j are real numbers.

QUEUE1 (a FIFO queue of integers): There are two operations, called put and get; put has an
integer input and no output, while get has no input and an integer output. The actions are
written put(i;) and get(;j) where i and j are integer values.

The sequence of actions that have occurred since the object has been instantiated is called trace
(or history). We assume here that objects execute one action at a time. Therefore, the history of
an object can be modeled as a sequence of actions. After each trace, an object allows for a
(possibly empty) set of actions, called chosen set of offered actions. Nondeterminism is modeled
by allowing, for a given trace, several sets of offered actions. In this case, the object may choose
one of them. Each set of offered actions corresponds to what is often called a state. These
considerations lead to the following definition of behavior in general.

 5

Definition 2.2: Let B be a set of pairs (t,A), where t is a sequence of actions, and A =
{A1,...,An} is a set of sets of actions. Then traces(B) is the set of all t such that there is (t,A) � B.
The elements of traces(B) are called traces of B. For a pair (t,A), the elements of A are called
sets of offered actions after t. A state of B is a pair (t,A), where A � A. B is called a behavior if it
satisfies the following conditions:
a) if (t,A) � B, then A � {};
b) if (t,A) � B and (t,A') � B, then A = A';
c) <> � traces(B);
d) if (t,A) � B, A � A, and a � A, then t ^<a> � traces(B);
e) if t ^<a> � traces(B), then there are (t,A) � B and A � A such that a � A.

<> denotes the empty trace, ^ is concatenation of traces.

Examples:
CM1 (a coffee machine providing continuous service): The set of actions was defined above.

The behavior consists of the set of all pairs (t, {{serve(coin; coffee)}}), where t is any finite
sequence of serve(coin; coffee) actions.

CM2 (a coffee machine that serves only one coffee): The set of actions is the same as for CM1.
The behavior consists of the following two pairs (<>, {{serve(coin; coffee)}}) and
(<serve(coin; coffee)>, {{}}) .

CM3 (a machine serving one coffee or one tea, nondeterministically): As CM2, but with an
additional actions serve(coin; tea) and serve(bill); the behavior is the set of pairs (<>,
{{serve(coin; coffee), serve(coin; tea)}}), (<serve(coin; coffee)>, {{}}), and (<serve(coin;
tea)>, {{}}).

CM4 (a machine serving one coffee or tea according to the desire of the customer): As CM3,
except that the actions serve(coin; coffee) and serve(coin; tea) are replaced by the actions
select-coffee(coin; coffee) and select-tea(coin; tea), respectively.

DS1 (a drink server like CM2, but sometimes offering whisky): There is the additional action
serve(bill; whisky). The behavior consists of the following two pairs (<>, {{serve(coin;
coffee)}}) and (<serve(coin; coffee)>, {{}, {serve(bill; whisky)}}). After serving a coffee,
DS1 may offer a whisky, depending on which state is entered.

SQRT1 (square root function for non-negative reals): The set of actions was defined above. The
behavior is the set of all pairs (t, {{sqrt(i; j)}}), where j2=i and t is any finite sequence of
such actions sqrt(i; j).

QUEUE1 (a FIFO queue of integers which blocks when empty): The set of actions was defined
above. The behavior is the set of all pairs (t, {{put(i;), get(;j)}}) and pairs (t', {{put(i;)}})
where t and t' are sequences of n put and interleaved with m get operations, and where n>m
for t and n=m for t', and J is the input of the (m+1)th put operation in t.

QUEUE2 (idem, but the operation get outputs error when the queue is empty): A similar
definition.

Definition 2.3: Let (t,A) be the current state of B, f be an operation, and i be an input. We say
that B blocks for f(i), if there exists no output o such that f(i;o) � A. B blocks for f, if for all i, it

 6

blocks for f(i). B accepts f(i), if it does not block for f(i). The (non-blocking) domain of an
operation f in state (t,A) of B is the set of i such that B accepts f(i) in this state. The domain of a
behavior B in state (t,A) (written "Dom(A)") is the set of f(i) accepted by B in this state. We say
that B has an undetermined output for f(i), if there are at least two actions f(i;o) and f(i;o') in A
with o � o'.

Note: Any set of f(i) which has an empty intersection with the domain of B in state (t,A) may be
considered a "refusal set" (in the sense of CSP [Hoare, 85 #526]), since B blocks for all f(i) in
such a set.

Examples:
a) The behavior CM2 accepts serve(coin) after the trace <>. It blocks for serve after the trace

<serve(coin; coffee)>.
b) In state (<>,{serve(coin; coffee),serve(coin; tea)}), CM3 blocks for serve(bill), and it has an

undetermined output for serve(coin).

Definition 2.4:
a) A behavior B is history independent iff the set of set of offered actions A is the same for all

traces t.
b) A behavior B is state deterministic iff the state of B is always uniquely determined by the

trace.
c) A behavior is constant iff it is history independent and state deterministic.
d) A behavior B is deterministic iff it is state deterministic, and the output is always uniquely

determined by operation and input.

A state deterministic behavior2 may still have undetermined outputs, thus state determinism is
weaker than determinism. We note that a history independent behavior is uniquely characterized
by the set A = {A1,...,An} of sets of offered actions; a constant behavior is characterized by a
single set A of offered actions, and a state deterministic behavior is characterized by its set of
traces.

Examples:
a) Among the above examples, only the behaviors CM1 and SQRT1 are history independent.
b) Among the above examples, only the behavior DS1 is not state deterministic.
c) Therefore, the behaviors CM1 and SQRT1 are constant.
d) Among the above examples, only the behaviors CM3 and DS1 are nondeterministic; CM3

because of its output non-determinism, DS1 because of its state non-determinism.
e) CM1 can be characterized by the set of offered actions {serve(coin; coffee)}. SQRT1 can be

characterized by the set of offered actions {sqrt(i; j) | j2=i }. CM4 can be characterized by
the set of traces {<>, <select-coffee(coin; coffee)>, <select-tea(coin; tea)>}.

Other examples of behavior:

2 In [Starke, 72 #1093], state deterministic behaviours have been called "observable"; in [Cerny, 92 #1092], they

have been termed "observably nondeterministic".

 7

COMM1 (communication service access point): The access point may accept or reject a
connection request, if accepted data may be sent. The actions are con(;accept), con(;refuse),
data(;ack); initially the first two actions are possible, the action con(;accept) leads to a new
state, the so-called data transfer state, in which only the action data(;ack) is possible. This
behavior is represented by the state diagram of Figure 1a.

SQRT2 (square root function, undefined for negative inputs): As SQRT1; this constant behavior
is characterized by a set of offered actions which includes also all actions of the form sqrt(i;
j) where i<0 (arbitrary j).

SQRT3 (square root function, provides error message for negative inputs): As SQRT1; this
constant behavior is characterized by a set of offered actions which includes also all actions
of the form sqrt(i; error) for i<0 .

SQRT4 (square root function, provides complex result for negative inputs): As SQRT1; this
constant behavior is characterized by a set of offered actions which includes also all actions
of the form sqrt(i; j*imaginary), where i<0 and j2=-i.

SORT1 (sorting a sequence of input records according to the value contained in the first field of
each record (sort key); in the case of equal sort keys, the order of the records is not
determined): This constant behavior is characterized by the set of offered actions of the form
sort(s1; s2) where s1 and s2 contain the same records and s2 is sorted. The behavior has
undetermined outputs.

SORT2 (as SORT1, except that in the case of equal sort keys, the order of the records in the
output is the same as for the input): The behavior is characterized by a subset of the offered
actions of SORT1 (in an obvious way). The behavior is deterministic.

STOP (the behavior that blocks for all actions): This constant behavior is characterized by the
empty set of offered actions.

ARBITRARY (accepts all): This constant behavior is characterized by the set A=Act of all
actions offered.

CHAOS (may accept any set of actions or block, as defined in [Hoare, 85 #526]): This history
independent behavior is characterized by A={A | A Act} is (highly) nondeterministic.

2.3 Specifications and behaviors

In the subsection above, we have introduced a framework for defining object behaviors in terms
of actions, traces, states, etc. The number of actions involved in a given behavior is often
infinite. Therefore it is not very convenient to specify a behavior directly in this behavior model.
Instead, one usually introduces a specification language with a well-defined syntax and
semantics. The syntax defines which (finite) expressions are valid specifications, and the
semantics defines for each valid specification either a single behavior, or a set of behaviors that
satisfy the specification. In the case of the LOTOS language [ISO, 89a #557] , for example, the
semantics of a specification is a single transition system, which can be represented in our
behavior formalism. For instance, the LOTOS expression " serve ?x:coin !coffee; stop [] serve
?x:coin !tea; stop " has as semantics the behavior CM3. Another example is the specification (in
the form of a state diagram) of Figure 1a which denotes the behavior COMM1.

 8

2.4 Conventions for undefined situations

We are interested in this paper in the notion of "specialization". Usually, one system
specification is considered a specialization of another one, if it defines certain aspects of the
system which were left undefined by the latter. Therefore the notion of "undefined" is important
in this context. However, in a formal context, it is necessary to define exactly what it means that
some aspect of a system is "undefined". In the following, we discuss different conventions that
may be used to give a formal meaning to "undefined".

A special value UNDEFINED: A partial function, which is undefined for certain values of its
argument type, may be converted into a (full) function (defined for all values of its argument
type) by introducing an additional value UNDEFINED into the range of the function. Instead of
saying "the result of the function is not defined" one says "the result of the function is
UNDEFINED". This approach is also the basis for defining the semantics of recursive functions
by the fixpoint operator . An example for this convention is provided by the behavior SQRT3.

Implicitly defined transitions: A incompletely specified finite state machine, for which no
transition is specified for certain pairs in present state and input received, may be converted into
a completely defined machine by introducing default transitions for the unspecified pairs of state
and input. One such convention is used by SDL, where the default transition is a transition back
to the same state with no output generated [Belina, 89 #82] . In the case of the specification of
Figure 1a, this leads to the behavior denoted by the diagram of Figure 1b. Another possible
convention is the introduction of an "error" state and default transitions that lead to this error
state, which leads in the case of the specification of Figure 1a to the behavior denoted by Figure
1c.

Blocking by default: In the context of formal specification techniques, it is sometimes assumed
that actions that are not explicitly specified are not possible. This is, for instance, the case for
LOTOS, CSP, Estelle, Finite State Machines, and Petri Nets. If the environment offers an
unspecified action, this action will be blocked. An example of such a behavior is SQRT1 which
blocks for negative inputs.

Undefined by default: Alternatively, we may assume that actions that are not explicitly
specified are possible, but their outputs are completely undetermined, as modelled in SQRT2 for
negative inputs. We call this convention "undefined by default". If the environment offers an
unspecified action, an arbitrary output will be returned. In the case of behaviors with state
changes, it is also necessary that the convention defines the next state. There are several
possibilities; similar to the implicitly defined transitions discussed above, one may assume that
the subsequent state is unchanged, or that an "error" state is reached. Different behaviors may be
assumed for the latter, such as the behaviors STOP, ARBITRARY, or CHAOS, as defined
above.

If one wants to use the undefined by default convention and allow for a blocking behavior for
certain actions in certain states, it is convenient to introduce the notion of an alphabet.. The
alphabet of an expression is the set of actions which are explicitely defined for that part of the

 9

specification. The undefined by default convention then only applies to actions that are not in the
alphabet; if for a given state no transition is specified for a given action of the alphabet, the
behavior blocks for that action. For example, let us consider the LOTOS expression "B = a; b;
stop [] c; stop", which has the alphabet {a, b, c}. If we assume the undefined by default
convention, the behavior denoted by this expression offers (initially) the actions a, c, and all
other actions not in the alphabet, such as d, e, etc. It only blocks for action b, because this action
is part of the alphabet. If we assume the blocking by default convention, which corresponds to
the semantics defined for LOTOS, the behavior denoted by this expression offers (initially) the
actions a and c, and blocks for all other actions that may be offered by the environment.

3 Comparison of behaviors

In this section, we consider various relations which may be used for comparing different
behaviors. We are in particular interested in the situation where one behavior B' is a
"specialization" of another behavior B. The meaning of specialization is not clear in this context
and may mean different things. Sometimes, one wants that a system component with the
specialized behavior B' may be used to replace any system component with behavior B in any
context without affecting "adversely" the system behavior. Several possible formal definitions
for "specialization" will be given in the following.

In the context of non-deterministic machines, a number of different "specialization" relations
have been considered[Brinksma, 86 #301] [Nicola, 87 #767] . One these definitions of
specialization, called reduction, has the following two aspects:
(1) Safeness: the traces of the specialized process are included in the traces of the more general
one, and
(2) Non-blocking: the specialized process only blocks in situations where the more general one
may also block.
These aspects intuitively ressemble the notions of "safeness" and "liveness" in [Alpern, 87 #16] ,
although there are certain differences as discussed below. Instead of using the above notion of
safeness, we use in this paper a stronger relation, which we call constrainment. Combined with
the non-blocking property, it leads to what we call reduction, which is slightly stronger than the
reduction of [Brinksma, 86 #301] .

We define in the following two "specialization" relations, called reduction and extension. They
are defined in terms of simpler relations, called constrainment, domain coverage, and
constrainment on the domain. Informally, a behavior B' is constrained by a behavior B, if for all
traces of B and B', B' can offer only actions that B can offer, too (this is "safeness", as defined
above). B' covers the domain of B, if for all traces of B and B', B' can accept everything that B
accepts (this corresponds to "non-blocking", as defined above). B' is constrained by B on its
domain, if for all traces of B and B', for the domain of B, B' can offer only actions that B can
offer, too; B' may also offer actions f(i;o) that B cannot offer, if f(i) is outside the domain of B.
We say that B' is a reduction of B if B' is constrained by B and covers its domain. We say that B'
is an extension of B if B' is constrained by B on its domain and covers its domain.

 10

In the following, we define these relations formally, first for the case of constant behaviors, then
for history independent behaviors and then for the general case. The formalization for history
independent behaviors, which are characterized by a set A of sets of offered actions, can also be
applied to considerations concerning the comparison of classes of behaviors and type checking
in object-oriented languages, as far as a class or a type can be represented by a set of sets of
offered actions.

3.1 Comparison of constant behaviors

Definition 3.1: Let B and B' be constant behaviors that are characterized by A and A',
respectively.
a) A' is constrained by A (written “A' <c A”) iff for all actions, f(i;o) �A' implies f(i;o) �A,

i.e., iff A' A.
b) A' covers the domain of A (written “A' >d A”) iff for all actions f(i;o) � A, there is an action

f(i;o') � A', i.e., iff Dom(A) Dom(A').
c) A' is constrained by A on its domain (written “A' <cd A”) iff for all operations f and inputs i,

if A accepts f(i), then for all o, if f(i;o) � A', then f(i;o) � A.
d) A' reduces A (written “A' <r A”) iff A' <c A and A' >d A.
e) A' extends A (written “A' >e A”) iff A' <cd A and A' >d A.

Examples:
a) SQRT1 <c SQRT2, SQRT1 <c SQRT3, SQRT1 <c SQRT4. Note that B' <c B implies B' <cd

B.
b) SQRT3 <r SQRT1, SQRT4 <r SQRT1. Note that B' <r B implies B' <c B, B' >d B, B' <cd B,

and B' >e B.
c) SQRT2 >e SQRT1. According to the definition of >e, B' >e B implies B' <cd B and B' >d B.
d) SORT2 <r SORT1.
e) STOP <c B and B >d STOP for every constant behavior B.
f) B <c ARBITRARY and ARBITRARY >d B for every constant behavior B with the same set

of actions as ARBITRARY.

3.2 Comparison of sets of constant behaviors

We consider in this subsection the comparison of sets of constant behaviors, where each constant
behavior is characterized by a set A of offered actions. We consider a set A = {A1,...,An} of n
constant behaviors and want to compare it with a set A' = {A1,...,An'} of n' constant behaviors.
These considerations apply to the comparison of two history independent behaviors
characterized by A and A', respectively. It also applies to the case where the sets A and A'
represent two classes or types of behaviors, represented directly by these respective sets.

Definition 3.2: Let B and B' be sets of constant behaviors that are characterized by A and A',
respectively. We define A' Rel A iff for all A' � A', there is A � A such that A' Rel A, where Rel

 11

is replaced uniformly by one of the relations <c, >d, <cd, <r, or >e, which are interpreted as in
Definition 3.1.

Corrolary: A' A implies A' Rel A, where Rel may be any of the relations <c, >d, <cd, <r, or
>e.

Examples:
a) {SQRT1, SQRT2} <c {SQRT2}, and <c {ARBITRARY}, but not <c {SQRT1} .
b) any set <c {ARBITRARY} <c CHAOS and CHAOS <c {ARBITRARY}, if the behaviors

have the same set of actions.
Note: In this context CHAOS denotes the set A characterizing the CHAOS behavior; and
ARBITRARY denotes the set A of actions characterizing the ARBITRARY behavior.

3.3 Comparison of general behaviors

For the general case of behaviors as defined by Definition 2.2, we define corresponding relations
for the comparison of behaviors as follows.

Definition 3.3: Let B and B' be arbitrary behaviors, as considered in Definition 2.2. We define B'
Rel B iff for any trace t, (t,A') � B' and (t,A) � B implies A' Rel A holds, where Rel is replaced
uniformly by one of the relations <c, >d, <cd, <r, or >e, and A' Rel A is interpreted as in
Definition 3.2.

This definition covers the special cases of constant and history independent behaviours discussed
in the subsections above.

Examples:
a) CM2 <c CM1, CM1 >d CM2, and CM3 >e CM2.
b) QUEUE1 <c QUEUE2, and QUEUE2 >e QUEUE1.
c) STOP <c B and B >d STOP for every behavior B.
d) B <c ARBITRARY and ARBITRARY >d B for every behavior B with the same set of

actions as ARBITRARY.
e) ARBITRARY <r CHAOS, if ARBITRARY and CHAOS have the same set of actions.

3.4 Discussion

Corollary: (The proof of these statements is given in the Appendix)
a) Let B, B' be behaviors. Then B' <c B implies traces(B') traces(B).
b) Let B, B' be behaviors. Then B' <c B implies B' <cd B.
c) Let B, B' be behaviors. Then B' <r B implies B' >e B.
d) The relations <c and <r are transitive.
e) The relation >d is transitive for constants, and sets of constant behaviors (history

independent behaviors). It is not transitive for deterministic behaviors in general.

 12

f) The relation <cd is not transitive for constant deterministic behaviors (and therefore neither
for more general behaviors).

g) The relation >e is transitive for constants, sets of constant behaviors (history independent
behaviors), and state deterministic behaviors. It is not transitive in general.

h) Let B, B' be deterministic behaviors. Then B' <r B iff B = B'.

We note that corollary (g) shows that the only room left for specializing object behavior
according to the reduction relation "<r" is the reduction of nondeterminism, either the reduction
of undetermined output or the reduction of state nondeterminism.

Corollary (c) shows that <r is stronger than >e. Under >e, it is possible to reduce the number of
unspecified receptions and to extend the functionality by adding actions, which is prohibited by
<r. This corresponds to "specialization" under the "blocking by default" convention, where the
unspecified cases are assumed to block. For example, if we want to add a new functionality
defined by the LOTOS expression "S' = d; b; stop" to the expression "S = a; b; stop [] c; stop"
mentioned in Section 2.3, which we may write in the form "S'' = a; b; stop [] c; stop [] d; b; stop",
the behavior B'', denoted by S'', is an extension (but not a reduction) of both of the two behaviors
B and B', i. e. B'' >e B and B'' >e B', where B and B' are the behaviors denoted by S and S',
respectively.

However, if we assume the "undefined by default" convention, where for the unspecified cases
all actions and all outputs are allowed, the adding of a new functionality corresponds to the
reduction <r. For the example of the expressions S, S' and S'' above, the behavior B'' is a
reduction of both B and B', i. e. B'' <r B and B'' <r B', since the alphabet of S includes the
alphabets of both S and S'. We therefore conclude that the extension relation is the natural
specialization relation in the context of the blocking by default convention, while the reduction
relation is natural in the context of the convention undefined by default.

In the context of actions without input nor output parameters, which correspond to models based
on labelled transitions systems and languages such as CCS and Basic LOTOS, the relations
defined above correspond to certain relations defined in the literature. In particular, we have the
following:
(i) B' >d B is equivalent to saying that B' "conforms" to B, as defined in [Brinksma, 86 #301] .
(ii) B' <r B implies that B' is a "reduction" of B, as defined in [Brinksma, 86 #301] .
(iii) B' >e B implies that B' is an "extension" of B, as defined in [Brinksma, 86 #301] .

4 Constructing specifications

In the discussion above, it has implicitly been assumed that several specifications exist, let us say
S1 and S2, and that one wants to determine whether certain specialization relations hold between
the behaviors denoted by them. Based on the relations defined between behaviors, one may
introduce corresponding specialization relations between specifications. For instance, the
relation <c (constrainment) would be defined to hold between the specifications S1 and S2 iff the

 13

same relation holds between the behaviors denoted by the respective specifications. One can then
directly speak about specialization relations between specifications.

The reduction relation between a specification S2 and a specification S1 may imply, for instance,
that a module satisfying S2 may replace a module satisfying S1 in the context of a given system.
In many situations, the two specifications are given and one wants to verify the relation between
them a-posteriori. In the process of system development, however, it would often be more useful
if one had some method by which one can construct a specification S2 from a given specification
S1 such that the relation is satisfied a priori (by construction).

Some work in this direction is reported in [Gotzhein, 92c #1084] , where the modification of
Estelle specifications is considered in relation with the specialization relations that hold between
the old and new versions of a specification. The complete Estelle language is supported,
however, the considered changes relate mainly to the finite-state-machine aspects of the
specifications. Another problem is considered in [Khendek, 92a #1047] , where one assumes that
two behavior definitions B1 and B2 are given and that one wants to construct a new behavior B3
which is a specialization of both, B1 and B2. The specialization relation considered is the
extension relation of [Brinksma, 86 #301] . In [Bochmann, 91c #284] , it is shown that the
parallel composition of B1 and B2 leads to a behavior which satisfies the constrainment relation
<c in respect to both B1 and B2. Similar considerations can also be found in [Erdogmus, 90
#1092] .

In the context of type checking in strongly typed programming languages, one is not concerned
with the detailed behavior of functions, but only with the possible range of input and output
parameters. Most programming languages include features for constructing new types from
already given ones. The constructed types satisfy certain relations as discussed in the following
subsection.

4.1 Defining types of behaviors

In this section we consider "types" of behavior, which we assume to be the same as a set of
behaviors. While most of the discussions relate to sets of constant behaviors, the considerations
may be generalized for more complex behaviors as described by Definition 2.2. In the following,
we use the convention that variables representing sets of behaviors are written in bold.

Definition 4.1: A type is a set of behaviors.

The notion of type is used in the context of programming and specification languages, where the
notion of strong typing corresponds to the verification of certain relations between the types of
variables and other expressions within a given program or specification. In the following we
discuss the most common approaches to defining useful types of behaviors, as typically provided
by object-oriented typed languages (see for instance [Meyer, 88 #727]).

 14

Type construction by enumeration of behaviors: A simple method of describing a type is by
enumerating the behaviors which are included in it.

Type construction by constructor operations and associated axioms: In many cases, the
number of object behaviors within a class are too large to take the enumeration approach to type
definition. Using an algebraic approach to the definition abstract data types, a type is defined by
a certain number of basic constants with one or more constructor operations and associated
axioms about the results returned by the constructor and other operations on the basic constants
and (recursively) on the results of the operations. A well-known example is the class of Integers
with the basic constant zero and the constructor operation succ .

Once a certain number of base types are defined, it is possible to define other types by stating the
properties satisfied by all behaviors within that type. The following definitions are examples of
such class definitions.

Type construction by functional range: The set of behaviors for which the results of the
operation x are confined to the type R is defined as { B | f(i;o) � B implies o � R}. This set of
behaviors can also be defined as the set of behaviors that are constrained by the behavior
Range(f, R) (formally {B | B <c 3 Range(f, R)}), where Range(f, R) is the behavior which
includes for all inputs i and all outputs o � R the action f(i;o), and which is "undefined by
default" for all other operations.

Type construction by functional domain: The set of behaviors including an operation with a
given name f and covering a given domain of input parameter behaviors D, is defined as { B |
for all i �D, there exists o with f(i;o) � B }. This set of behaviors can also be defined as the set
of behaviors that cover the domain of the behavior Domain(f, D) (formally {B | B >d Domain(f,
D)}), where Domain(f, D) is the behavior which includes for all outputs o and all inputs i � D
the action f(i;o), and which is "undefined by default" for all other operations. (We note that this
implies that a behavior of this type will never block for the operation f with an input parameter in
D).

Type construction by functional signature: We call a functional signature f<D,R> the
definition of an operation name f, and two types D and R. For a given functional signature, we
define the type of behaviors that satisfy the functional signature to be the class FunSig(f<D,
R>) = {B | B <c Range(f, R) and B >d Domain(f,D)}.

Note: The class of mathematical functions, named f, from domain D to range R is a subset of
FunSig(f<D,R>); namely those elements of this set with no output nondeterminism for all
elements of the domain and no action outside this domain. The concept of "partial functions",
which have no defined result for certain elements of the domain, may be interpreted in several
different manners, as discussed in Section 2.4.

3 In this context, the relations <c and <cd are equivalent since the domain of Range(f, R) is maximal.

 15

The above definitions lead to the well-known theorem (see for instance [Black, 87 #104]) about
the contravariant typing relationship between the types of functions and their input parameters,
which may be stated as follows.

Proposition 4.1 (functional subtyping): Given two functional signatures f<D,R> and f<D',R'>
for the same operation name f, the relations "R' R" and "D D'" imply that the set of
behaviors satisfying f<D',R'> also satisfy f<D,R>, that is, FunSig(f<D', R'>) FunSig(f<D,
R>).

Type construction by object signature: As usual in object- oriented languages, we define an
object signature to be a set of functional signature definitions with disjoint operation names.
The set of operation names is called the alphabet of the object signature. For a given object
signature s, we define the type of behaviors that satisfy the signature, written "Sig(s)", to be the
intersection of all the FunSig(f<D,R>) where f<D,R> are the functional signatures included in
s.

This definition implies the following theorem which corresponds to the well-known convention
of object-oriented languages, that by adding a new operation to a given object signature, one
obtains a corresponding type of behaviors which is a subtype (i.e. subset) of the original one.
This can be stated as follows.

Proposition 4.2 (object-oriented subtyping): If the object signature s' is obtained from a
signature s by the addition of the functional signature f<D,R>, then Sig(s') Sig(s).

5 Specification of optional behaviors

We consider in the following that a system specification includes a module A for which a
requirements specification SA is given. An implementation IA of that module should satisfy the
requirements SA. We discuss in this section what the meaning of "IA satisfies SA" should be.

In many cases, the requirements define precisely the behavior of the implementation. In this
case, "IA satisfies SA" could mean "behavior of IA = behavior denoted by SA" and we assume
that the behaviors a defined in the framework discussed in Section 2. In many cases, however,
the requirements allow for many different implementation behaviors. In this case we may assume
that a specification denotes a specific behavior, and we say that the statement "IA satisfies SA"
means that "behavior of IA Rel behavior denoted by SA" where Rel is one of the
specialization relations discussed in Section 3. The reduction and extension relations seem to be
good candidates for this purpose.

It seems, however, that in many cases one needs even more flexibility than provided by the
scheme above. In particular, often a distinction is made between those behavior aspects which an
implementation must perform and other aspects which are optional. This distinction has been
made in the context of transition systems by Larson who distinguishes between MUST and
MAY transitions [Borgesson, 92 #1093] . Such a distinction can also be introduced by

 16

distinguishing between safety and liveness assertions [Alpern, 87 #16] . Safety states that
"nothing bad can happen", while liveness states that "certain good things will eventually
happen"; these "good things" that are promised may be less that whatever is allowed to be
implemented according to the safety constraints.

We notice that the specialization relations reduction and extension include two aspects, the
constrainment relation <c or <cd and the domain coverage relation >d . We think that the former
plays the role of "safety" which indicates what may be implemented, and that the domain
coverage relation defines what must be covered. If these two aspects are not always the same, we
have to foresee that they may be specified independently. We are therefore led to the following
definition of a specification.

Definition 5.1:

a) A specification S denotes (according to the semantics of the specification language) a pair
(Bc, Bd) of two behaviors Bc and Bd. We write Semc (S) for Bc , and Semd (S) for Bd.

b) A behavior B satisfies a specification S in respect to reduction iff B <c Semc (S) and B >d
Semd (S).

c) A behavior B satisfies a specification S in respect to extension iff B <cd Semc (S) and B >d
Semd (S).

As noted above, the two behaviors Semc (S) and Semd (S) may be the same in many situations,
but in general, they could be different. We assume in general that Semd (S) <c Semc (S) holds.

As an example we consider the behavior of the communication service COMM1 denoted by the
diagram of Figure 1a. Since the objective of the service is to provide data transfer in the open
state, the action con(;refuse) is not really required. We may therefore consider that the
implementation of this action is optional, that is, a behavior as shown in Figure 1d is also
acceptable. We therefore want a specification S such that Semc (S) is as shown in Figure 1a, and
Semd (S) is as shown in Figure 1d. Such a specification may be given in the form of a diagram as
shown in Figure 1e, or in the following linear specification which is written in an extended
version of LOTOS:

Closed[con,data] where

process Closed[con,data] : noexit = con !accept ; Open[con,data]

 [] OPTIONAL con!refuse ; Closed[con,data] endproc

process Open[con,data] : noexit = data !ack ; Open[con,data] endproc

Another example of the use of these concepts can be found in the context of strongly typed
programming languages, where the signature of a function indicates the domain of the input
parameters for which the function must be defined and the range of the possible results. When
the compiler type-checks a function definition, it verifies that the function definition satisfies the
signature (although in practice, the domain coverage is usually not checked). Therefore, the type
declaration of a function (i.e. the definition of its functional signature) is a specification, where

 17

the behaviors Semc and Semd are the behaviors Range and Domain, respectively, as defined in
Section 4.1. The type checking of object-oriented programs [Black, 87 #104] follows the same
principles.

6 Conclusions

We have shown that a generalized reduction relation may be used to compare object behaviors
covering a wide range of concerns, including set of values, functions, object-oriented class
definitions, and sequential machines possibly including nondeterminism. This relation is based
on two more basic relations for the comparison of object behaviors, namely (a) constrainment,
which is based on the notion of actions offered by an object as a function of the trace of actions
executed in the past, and (b) domain coverage, which is based on the notion of absense of
blocking for certain kinds of actions.

This relation also provides a framework for the definition of requirement specifications, the
conformance between implementations and specifications, as well as for the comparison between
specifications, which is important for managing the multiple inheritance subtyping lattice of
object-oriented specifications and for questions of module replacement and reutilisation. The
relation may also be used within a framework for the dynamic modification of systems [Erradi,
92g #1089] where the reduction relation assures that the modified system conserves its important
properties after any modifications introduced.

It is shown that our notion of reduction is a generalization of the reduction relation as defined for
transition systems [Brinksma, 86 #301] . Also the extension relation defined in that context
allows for a generalization, which is in fact quite closely related to the generalized notion of
reduction. It is interesting to note that both notions may be considered to be natural
representation of "specialization", depending on the assumption made about undefined behavior
aspects (i.g. those aspects not explicitly defined).

Some work on the construction of behavior definitions which satisfy certain specialization
relations with given behaviors has been reported in the introductory part of Section 4. Futher
work is required in order to make these approaches more practical and to facilitate their practical
use in the software and system development process.

In Sectio 5, we have introduced the notion of a specification which consists of two parts, one
representing the safety requirements (a kind of "maximum" behavior) and the other representing
the "minimum" behavior requirements which represents a minimum implementation. This is in
contrast to most specification languages which assume that a specification is the definition of a
single "behavior". Further work is needed to explore the relevance of our more complex notion
of specification, and to find an appropriate notation for representing the two parts within a single
syntactical structure, which should ideally be an extension of the notation used by an existing
specification language for writing a single behavior definition.

 18

 Acknowledgements: The authors gratefully acknowledge clarifying discussions with, and
comments on earlier versions of the manuscript by A. Das, R. Dssouli, M. Erradi, F. Khendek,
M. Yao.

References
[Alpe 87] B. Alpern and F. B. Schneider, Recognizing safety and liveness, Distributed Computing 2 (1987), pp.
117-126.

[Amer 87b] P. America, Inheritance and subtyping in a Parallel Object-Oriented Language, in Proc. of Europ.
Conf. on Object-Oriented Progr. (AFCET), 1987, pp. 281-289.

[Amer 89] P. America, A behavioural approach to subtyping in object-oriented programming languages, Philips J.
Res. (Netherlands), Vol. 44, Nos. 2-3, pp.365-383, 1989.

[Beli 89] F. Belina and D. Hogrefe, The CCITT-Specification and Description Language SDL, Computer Networks
and ISDN Systems, Vol. 16, pp.311-341, 1989.

[Blac 87] A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter, Distribution and Abstract Types in Emerald,
IEEE Trans. on Software Engeneering, vol. se-13, no. 1, january 1987.

[Boch 91c] G. v. Bochmann, On the specialization of object behaviors, révision de la publication départementale
P#687.

[Borg 92] A. Borgesson, K. Larson and A. Skou, Generality in design and compositional verification using Tav,
Proc. FORTE'92, Formal Description Techniques V, North Holland Publ., 1993.

[Brin 86] E. Brinksma and G. Scollo, Lotos specifications, their implementations and their tests, Protocol
Specification, Testing and Verification VI (IFIP Workshop, Montreal, 1986), North Holland Publ., pp. 349-360.

[Card 88a] L. Cardelli, A semantics of multiple inheritance, Information and Computation 76 (1988), pp. 138-164.

[Cusa 89] E. Cusack, Refinement, conformance and inheritance, Workshop on Theory and Practice of Refinement,
Open Univ., UK, Jan. 1989.

[Erdo 90] H. Erdogmus, H. Hakan and R. Johnston, On the specification and synthesis of communicating processes,
IEEE Trans. SE, Vol. 16, 12 (Dec. 1990), pp.

[Erra 92g] M. Erradi, R. Dssouli and G. v. Bochmann, A framework for dynamic evolution of distributed systems
specifications, Réseaux et Informatique Répartie, to be published.

[Gotz 92c] R. Gotzhein, Temporal logic and applications - A tutorial, Computer Networks and ISDN Systems 24
(1992), pp. 203-218.

[Hoar 85] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[Loto 89a] ISO, IS8807 (1989), LOTOS: a formal description technique,

[Khen 92a] F. Khendek and G. v. Bochmann, Incremental construction approach for distributed system
specifications, submitted for publication.

[Meye 88] B. Meyer, Object Oriented Software Construction, C.A.R. Hoare Series Editor, Prentice Hall, 1988.

[DeNi 87] R. D. Nicola, Extensional Equivalences for Transition Systems, Acta Informatica, 24 (1987), 211-237.

 19

Appendix: Proofs for Corollary of Section 3.4

a) Let B, B' be behaviors. Then B' <c B implies traces(B') traces(B).

Proof:

Assume that the proposition does not hold. It follows that there must be a (non-empty) trace

t = t'^<a> s. t. t�traces(B'), t�traces(B), and t'�traces(B). Since B and B' are behaviors, we
have A, A' such that (t',A)�B and (t',A')�B', and there is A'�A' such that a�A'. From B' <c

B, it follows that A' <c A holds, which implies that for A', there is A�A such that A'A. It

follows that a�A, and therefore, t'^<a> � traces(B). This contradicts our assumption,

therefore, the proposition holds.

b) Let B, B' be behaviors. Then B' <c B implies B' <cd B.

Proof:

It suffices to show that A' <c A implies A' <cd A. Assume that this does not hold. Then for

some f(i) accepted by A, there is an output o such that f(i;o)�A' and f(i;o)�A. Therefore,

A'A does not hold, which contradicts our assumption.

c) Let B, B' be behaviors. Then B' <r B implies B' >e B.

Proof:

Follows immediately from b) and the definitions of <r and >e.

d) The relations <c and <r are transitive in general.

Proof for <c :

Follows immediately from the definitions.

Proof for <r :

Recall that for arbitrary behaviors B, B', we have B' <r B iff B' <c B and B' >d B. Since <c is

transitive in general (see d), it suffices to show
 (i) B" <c B' � B' <c B � B" >d B' � B' >d B � B" >d B

in order to prove the transitivity of <r. From a) and B" <c B', it follows that traces(B")

traces(B'), therefore, it suffices to prove
 (ii) traces(B") traces(B') � B" >d B' � B' >d B � B" >d B

From traces(B") traces(B'), we obtain

 (iii) t,A". ((t,A")�B" � A'. (t,A')�B')

 20

From B" >d B' � B' >d B, we get

 (iv) t,A,A',A". ((t,A)�B � (t,A')�B' � (t,A")�B" � A" >d A' � A' >d A)

Since >d is transitive for sets of constant behaviors, we get

 (v) t,A,A',A". ((t,A)�B � (t,A')�B' � (t,A")�B" � A" >d A)

Together with (iii), we obtain
 (vi) t,A,A". ((t,A)�B � (t,A")�B" � A" >d A)

which is the definition of B" >d B.

e) The relation >d is transitive for history independent behaviors, but not for deterministic

behaviors, state deterministic behaviors, and general behaviors.

Proof:

Transitivity for history independent behaviors follows immediately from the definitions. To

prove that it is not transitive for deterministic behaviors, we give a counter example. Define

B, B', and B" as follows:

 B = { (<>,{{f(i;o)}}), (<f(i;o)>,{{f(i;o)}}), (<f(i;o) f(i;o)>, {{}}) }

 B' = { (<>,{{f(i;o')}}), (<f(i;o')>,{{}}) }

 B" = { (<>,{{f(i;o)}}), (<f(i;o)>,{{}}) }
B" >d B' and B' >d B hold, but B" >d B does not, because after trace <f(i;o)>, B" blocks for

f(i), but B accepts f(i). Since B, B', and B" are deterministic behaviors, the relation >d is also

not transitive for state deterministic behaviors and general behaviors.

f) The relation <cd is not transitive for constant deterministic behaviors, constant behaviors,

history independent behaviors, deterministic behaviors, state deterministic behaviors, and

general behaviors.

Proof:

To prove that <cd is not transitive for constant deterministic behaviors, we give a

counterexample. Define B, B', and B" as follows:

 B = A = { f(i;o) }

 B' = A' = { }

 B" = A" = { f(i;o') }
B" <cd B' and B' <cd B hold, but B" <cd B does not, because for f(i), o' is not an output of

B. From this, it follows that <cd is also not transitive for constant behaviors, history

independent behaviors, deterministic behaviors, state deterministic behaviors and general

behaviors.

 21

g) The relation >e is transitive for history independent behaviors, state deterministic behaviors,

deterministic behaviors and constant deterministic behaviors, but not in general.

Proof:

Notation: Let A be a set of actions. oi(A) =Df {f(i) | o. f(i;o)�A}. Af(i) =Df {f(i;o) |

f(i;o)�A}.

I. >e is transitive for history independent behaviors.

Let A, A', A" be history independent behaviors. Recall that for history independent
behaviors A, A', we have A' >e A iff A' <cd A and A' >d A. Since >d is transitive for history

independent behaviors (see e), it remains to be shown
 (i) A" >e A' � A' >e A � A" <cd A

Exploiting the definition of >e and using the above notation, the antecedent is the following:

 (ii) A".(A"�A" � A'.(A'�A' � oi(A') oi(A") � f,i.(f(i)�oi(A') � A"f(i) A'f(i)))) �

 A'. (A'�A' � A. (A�A � oi(A) oi(A') � f,i.(f(i)�oi(A) � A'f(i) Af(i))))

Since A"f(i) A'f(i) holds for all f(i)�oi(A'), it also holds for all f(i)�oi(A), because oi(A)

oi(A'). Therefore, we obtain
 (iii) A".(A"�A" � A,A'.(A'�A' � A�A � f,i.(f(i)�oi(A) � A"f(i) A'f(i) Af(i))))

This leads us to
 (iv) A".(A"�A" � A.(A�A � f,i.(f(i)�oi(A) � A"f(i) Af(i))))

which is the definition of A" <cd A.

II. >e is transitive for state deterministic behaviors, deterministic behaviors, and constant

deterministic behaviors.
In the following, B, B', and B" denote state deterministic behaviors, where B" >e B' and B'

>e B hold. We begin by proving the following lemma:

 (i) traces(B) traces(B") traces(B')

Assume that (i) does not hold. Then there must be a (non-empty) trace t = t'^<a> s. t.

t�traces(B)traces(B"), t�traces(B'), and t'�traces(B'), where a=f(i;o). Since B, B', and B"

are state deterministic, there are uniquely determined sets A, A', and A" such that (t',A)�B,

(t',A')�B', and (t',A")�B". If t�traces(B)traces(B") and t�traces(B'), then a�AA" and

a�A'. We observe the following:
 - From B" >e B' � f(i;o)�A" � f(i;o)�A', it follows that f(i)�oi(A'), otherwise, B" would

not be constrained by B' on its domain.
 - From B' >e B � f(i;o)�A' � f(i;o)�A, it follows that f(i)�oi(A'), otherwise, B' would not

cover the domain of B.

These observation are in contradiction, therefore, (i) holds.

 22

Exploiting and simplifying the definition of >e and using the above notation, B" >e B' and B'

>e B can be rewritten as:

 (ii) t,A',A".((t,A')�B' � (t,A")�B" � f,i.(f(i)�oi(A') � f(i)�oi(A") � A"f(i) A'f(i)))) �

 t,A,A'. ((t,A)�B � (t,A')�B' � f,i.(f(i)�oi(A) � f(i)�oi(A') � A'f(i) Af(i))))

Together with (i), B" >e B follows immediately. Note that from this result, it follows that >e

is also transitive for deterministic and constant deterministic behaviors.

III. >e is not transitive in general.

To prove that >e is not transitive in general, we give a counterexample. Define B, B', and B"

as follows:

 B = { (<>,{{},{f(i;o)}}), (<f(i;o)>,{{f(i;o)}}), (<f(i;o) f(i;o)>, {{}}) }

 B' = { (<>,{{},{f(i;o')}}), (<f(i;o')>,{{}}) }

 B" = { (<>,{{f(i;o)}}), (<f(i;o)>,{{}}) }
B" >e B' and B' >e B hold, but B" >e B does not, because after trace <f(i;o)>, B" blocks for

f(i), but B accepts f(i).

h) Let B, B' be deterministic behaviors. Then B' <r B iff B = B'.

Proof:

Since a deterministic behavior is characterized by the set of its traces, it suffices to show B'
<r B iff traces(B) = traces(B').

Notation: Let A be a set of actions. oi(A) =Df {f(i) | o. f(i;o)�A}.

I. B' <r B � traces(B') traces(B)

Follows immediately from a) and the definition of <r.

II. B' <r B � traces(B) traces(B')

Assume that this does not hold. Then there must be a (non-empty) trace t = t'^<a> such that

t'�traces(B)traces(B'), t�traces(B), and t�traces(B'), where a=f(i;o). Since B and B' are

deterministic behaviors, the trace uniquely determines the set of offered actions. Let A, A'

be the set of offered actions of B, B' after t', respectively. From t�traces(B), we can conclude
that a�A and f(i)�oi(A). From B' <r B, we have oi(A) oi(A'), therefore, f(i)�oi(A'). This

implies that there is o' such that f(i,o')�A'. However, o�o', because f(i;o)�A'. Since

traces(B')traces(B), f(i;o')�A must hold. It follows that B has an undetermined output for

f(i) after t', which contradicts our assumption that B is a deterministic behavior.

III. traces(B) = traces(B') � B' <c B

 23

Assume that this does not hold. Then there must be a (non-empty) trace t�traces(B) and sets

A, A' such that (t,A)�B, (t,A')�B', and ¬(A'A). Therefore, we have an action a such that

a�A' and a�A. Since B' is a behavior, t^<a>�traces(B'). B is a deterministic behavior,

therefore, the set A of offered actions after t is uniquely determined. If a�A, then

t^<a>�traces(B). It follows that traces(B) � traces(B'), which contradicts our assumption.

IV. traces(B) = traces(B') � B' >d B

For all t�traces(B), there are uniquely determined sets A, A' of offered actions after t for B,

B', respectively. Since B, B' are deterministic and traces(B) = traces(B'), A = A' holds for all
traces t�traces(B) and the corresponding sets A, A' of offered actions, which implies B' >d

B.

 24

con(;accept)

con(;refuse) data(;ack)

(a)

con(;accept)

con(;refuse) data(;ack)

data(;ack) con(;refuse)

con(;accept)

(b)

con(;accept)

con(;refuse) data(;ack)

(c)

error

data(;ack) con(;accept)

con(;refuse)

con(;accept)

data(;ack)

(d)

con(;accept)

con(;refuse) data(;ack)

(e) Optional

Figure 1: Different versions of a communication service access point

 25

References

